Effect of Single Vs. Group Culture System On In Vitro Maturation and Embryo Development in Bovine
Keywords:
Blastocysts Quality, Bovine Oocyte, Group Culture, In vitro Maturation, In vitro Embryo Culture, Single CultureAbstract
The first objective of this research was to compare the effect of single vs. group culture methods on the developmental rate of oocyte maturation and embryo production in vitro. Next, to investigate the quality of blastocyst derived from single vs. group culture methods. Bovine cumulus-oocyte complexes (COCs) derived from slaughterhouse ovaries were matured in single (1 COCs/drop) and group (20 COCs/drop) methods for 22 h followed by 6 h in vitro fertilization, and zygotes were cultured for 8 days. To evaluate the blastocyst quality TUNEL Assay was performed on day 8 of IVC. The results showed that single culture methods significantly decreased the rate of oocyte nuclear maturation (90.1 ± 1.5 vs. 81.2 ± 2.5; P<0.01) and subsequent embryonic development (47.6 ± 2.2 vs. 41.5 ± 1.9; P < 0.05) compared to the group culture methods. In contrast, the rate of fertilization and the number of total cells in blastocysts were similar between single vs. group culture methods. In addition, there was a tendency to decrease the percentage of apoptosis cells in blastocysts derived from a single method than that observed in the group culture method. In conclusion, the group culture method had higher developmental competence of oocytes compared to the single method; however, in terms of blastocyst quality, no significant difference was found between the two groups of culture methods. These findings suggest that improvement of single culture methods will be the best option to reduce the constraints associated with group culture methods and may be contributed to quality embryo transfer in either animals or humans.
References
Chen, L., Russell, P. T., & Larsen, W. J. (1993). Functional significance of cumulus expansion in the mouse: roles for the preovulatory synthesis of hyaluronic acid within the cumulus mass. Mol Reprod Dev, 34(1), 87-93. https://doi.org/10.1002/mrd.1080340114
Choi, J. K., Agarwal, P., & He, X. (2013). In vitro culture of early secondary preantral follicles in hanging drop of ovarian cell-conditioned medium to obtain MII oocytes from outbred deer mice. Tissue Eng Part A, 19(23-24), 2626-2637. https://doi.org/10.1089/ten.TEA.2013.0055
Gilchrist, R. B., & Thompson, J. G. (2007). Oocyte maturation: emerging concepts and technologies to improve developmental potential in vitro. Theriogenology, 67(1), 6-15. https://doi.org/10.1016/j.theriogenology.2006.09.027
Gomez, M. N., Kang, J. T., Koo, O. J., Kim, S. J., Kwon, D. K., Park, S. J., Atikuzzaman, M., Hong, S. G., Jang, G., & Lee, B. C. (2012). Effect of oocyte-secreted factors on porcine in vitro maturation, cumulus expansion and developmental competence of parthenotes. Zygote, 20(2), 135-145. https://doi.org/10.1017/S0967199411000256
Guo, J., Zhang, T., Guo, Y., Sun, T., Li, H., Zhang, X., Yin, H., Cao, G., Yin, Y., Wang, H., Shi, L., Guo, X., Sha, J., Eppig, J. J., & Su, Y. Q. (2018). Oocyte stage-specific effects of MTOR determine granulosa cell fate and oocyte quality in mice. Proc Natl Acad Sci U S A, 115(23), E5326-E5333. https://doi.org/10.1073/pnas.1800352115
Hao, X., Yuan, F., Cui, Y., & Zhang, M. (2022). Oocyte-secreted factor TGFB2 enables mouse cumulus cell expansion in vitro. Mol Reprod Dev, 89(11), 554-562. https://doi.org/10.1002/mrd.23646
Hoelker, M., Rings, F., Lund, Q., Phatsara, C., Schellander, K., & Tesfaye, D. (2010). Effect of embryo density on in vitro developmental characteristics of bovine preimplantative embryos with respect to micro and macroenvironments. Reprod Domest Anim, 45(5), e138-145. https://doi.org/10.1111/j.1439-0531.2009.01535.x
Huang, Y., Yu, Y., Gao, J., Li, R., Zhang, C., Zhao, H., Zhao, Y., & Qiao, J. (2015). Impaired oocyte quality induced by dehydroepiandrosterone is partially rescued by metformin treatment. PLoS One, 10(3), e0122370. https://doi.org/10.1371/journal.pone.0122370
Isobe, N., & Terada, T. (2001). Effect of the factor inhibiting germinal vesicle breakdown on the disruption of gap junctions and cumulus expansion of pig cumulus-oocyte complexes cultured in vitro. Reproduction, 121(2), 249-257. https://www.ncbi.nlm.nih.gov/pubmed/11226049
Khatun, H., Wada, Y., Konno, T., Tatemoto, H., & Yamanaka, K. I. (2020). Endoplasmic reticulum stress attenuation promotes bovine oocyte maturation in vitro. Reproduction, 159(4), 361-370. https://doi.org/10.1530/REP-19-0492
Larsen, W. J., Chen, L., Powers, R., Zhang, H., Russell, P. T., Chambers, C., Hess, K., & Flick, R. (1996). Cumulus expansion initiates physical and developmental autonomy of the oocyte. Zygote, 4(4), 335-341. https://doi.org/10.1017/s096719940000335x
Larsen, W. J., Wert, S. E., & Brunner, G. D. (1986). A dramatic loss of cumulus cell gap junctions is correlated with germinal vesicle breakdown in rat oocytes. Dev Biol, 113(2), 517-521. https://doi.org/10.1016/0012-1606(86)90187-9
Lonergan, P., Fair, T., Corcoran, D., & Evans, A. C. (2006). Effect of culture environment on gene expression and developmental characteristics in IVF-derived embryos. Theriogenology, 65(1), 137-152. https://doi.org/10.1016/j.theriogenology.2005.09.028
Lonergan, P., Rizos, D., Ward, F., & Boland, M. P. (2001). Factors influencing oocyte and embryo quality in cattle. Reprod Nutr Dev, 41(5), 427-437. https://doi.org/10.1051/rnd:2001142
Mauchart, P., Vass, R. A., Nagy, B., Sulyok, E., Bodis, J., & Kovacs, K. (2023). Oxidative Stress in Assisted Reproductive Techniques, with a Focus on an Underestimated Risk Factor. Curr Issues Mol Biol, 45(2), 1272-1286. https://doi.org/10.3390/cimb45020083
Nishio, M., Hoshino, Y., Tanemura, K., & Sato, E. (2014). Effect of single-oocyte culture system on in vitro maturation and developmental competence in mice. Reprod Med Biol, 13(3), 153-159. https://doi.org/10.1007/s12522-014-0177-1
O'Neill, C. (1997). Evidence for the requirement of autocrine growth factors for development of mouse preimplantation embryos in vitro. Biol Reprod, 56(1), 229-237. https://doi.org/10.1095/biolreprod56.1.229
Paramio, M. T., & Izquierdo, D. (2016). Recent advances in in vitro embryo production in small ruminants. Theriogenology, 86(1), 152-159. https://doi.org/10.1016/j.theriogenology.2016.04.027
Sherbahn, R., Frasor, J., Radwanska, E., Binor, Z., Wood-Molo, M., Hibner, M., Mack, S., & Rawlins, R. G. (1996). Comparison of mouse embryo development in open and microdrop co-culture systems. Hum Reprod, 11(10), 2223-2229. https://doi.org/10.1093/oxfordjournals.humrep.a019081
Shi, C., Sun, T. C., Chen, S. W., Wang, P., Liang, R., Duan, S. N., Han, H. J., Shen, H., & Chen, X. (2022). Effects of embryo density on cell number of day 3 embryos cultured in a 30-mul drop: a retrospective cohort study. Zygote, 30(4), 487-494. https://doi.org/10.1017/S0967199421000812
Su, Y. Q., Denegre, J. M., Wigglesworth, K., Pendola, F. L., O'Brien, M. J., & Eppig, J. J. (2003). Oocyte-dependent activation of mitogen-activated protein kinase (ERK1/2) in cumulus cells is required for the maturation of the mouse oocyte-cumulus cell complex. Dev Biol, 263(1), 126-138. https://doi.org/10.1016/s0012-1606(03)00437-8
Su, Y. Q., Wigglesworth, K., Pendola, F. L., O'Brien, M. J., & Eppig, J. J. (2002). Mitogen-activated protein kinase activity in cumulus cells is essential for gonadotropin-induced oocyte meiotic resumption and cumulus expansion in the mouse. Endocrinology, 143(6), 2221-2232. https://doi.org/10.1210/endo.143.6.8845
Suzuki, H., Jeong, B. S., & Yang, X. (2000). Dynamic changes of cumulus-oocyte cell communication during in vitro maturation of porcine oocytes. Biol Reprod, 63(3), 723-729. https://doi.org/10.1095/biolreprod63.3.723
Tao, T., Robichaud, A., Mercier, J., & Ouellette, R. (2013). Influence of group embryo culture strategies on the blastocyst development and pregnancy outcome. J Assist Reprod Genet, 30(1), 63-68. https://doi.org/10.1007/s10815-012-9892-x
Tao, Y., & Liu, X. J. (2013). Deficiency of ovarian ornithine decarboxylase contributes to aging-related egg aneuploidy in mice. Aging Cell, 12(1), 42-49. https://doi.org/10.1111/acel.12016
Vajta, G., Korosi, T., Du, Y., Nakata, K., Ieda, S., Kuwayama, M., & Nagy, Z. P. (2008). The Well-of-the-Well system: an efficient approach to improve embryo development. Reprod Biomed Online, 17(1), 73-81. https://doi.org/10.1016/s1472-6483(10)60296-9
van de Sandt, J. J., Schroeder, A. C., & Eppig, J. J. (1990). Culture media for mouse oocyte maturation affect subsequent embryonic development. Mol Reprod Dev, 25(2), 164-171. https://doi.org/10.1002/mrd.1080250209
Vanhoutte, L., Nogueira, D., Dumortier, F., & De Sutter, P. (2009). Assessment of a new in vitro maturation system for mouse and human cumulus-enclosed oocytes: three-dimensional prematuration culture in the presence of a phosphodiesterase 3-inhibitor. Hum Reprod, 24(8), 1946-1959. https://doi.org/10.1093/humrep/dep104
Xu, Y., & Qiao, J. (2021). Comparison of in vitro maturation and in vitro fertilization for polycystic ovary syndrome patients: a systematic review and meta-analysis. Ann Transl Med, 9(15), 1235. https://doi.org/10.21037/atm-21-3037
Zhang, M., Su, Y. Q., Sugiura, K., Xia, G., & Eppig, J. J. (2010). Granulosa cell ligand NPPC and its receptor NPR2 maintain meiotic arrest in mouse oocytes. Science, 330(6002), 366-369. https://doi.org/10.1126/science.1193573
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Hafiza Khatun, Md. Rasadul Islam
This work is licensed under a Creative Commons Attribution 4.0 International License.