Genetic strategies to reduce enteric methane emission from ruminants
Keywords:
Anthropogenic, Genomic selection, Greenhouse gas, Heritable, MethaneAbstract
Measuring and controlling methane emissions from cattle is becoming extremely important for the environment and policymakers. Although ruminants have the advantage of being able to eat forages and graze on land that is not appropriate for arable cropping apart from this, they also produce methane which is a potent Greenhouse gas (GHG), 2% to 12% of the gross energy consumed is converted to enteric CH4 during ruminal digestion, which produces around 6% of worldwide anthropogenic greenhouse gas emissions. As a result, ruminant producers must identify cost-effective solutions to minimize emissions while still fulfilling customer demand. Traditional strategies for reducing ruminant methane output have been successful, but only to a limited and frequently transient extent. When assessed in respiration chambers, individual animal emissions are somewhat heritable and repeatable across diets. To date, few of the suggested strategies have been implemented because the methane emissions currently have no direct or indirect economic value for farmers, with no financial incentive to change practices and secondly most strategies have limited, or no long-term effects. Potentially, the most sustainable way of reducing enteric CH4 emission from ruminants is through the estimation of genomic breeding values to facilitate genetic selection and there is a lot of potential in using genetics to reduce CH4 emissions from ruminants as the alterations made using genetics are permanent, cumulative, and far-reaching. New technologies, including genomic selection, microbiome-based breeding strategies, metagenomic investigations, and genetic selection of animals may be a sustainable way to reduce ruminant intestinal emissions. These advanced genetic technologies also have the potential to give considerable long-term economic benefits and can also be used in grazing animals.
Keywords: Anthropogenic, Genomic selection, Greenhouse gas, Heritable, Methane.
References
Alemu, A. W., Dijkstra, J., Bannink, A., France, J., & Kebreab, E. (2011). Rumen stoichiometric models and their contribution and challenges in predicting enteric methane production. Animal Feed Science and Technology, 166–167, 761–778. https://doi.org/10.1016/j.anifeedsci.2011.04.054
Andries, J., Buysse, F., Brabander, D., & Cottyn, D. (1987). Isoacids in ruminant nutrition: their role in ruminal and intermediary metabolism and possible influences on performances-a review. Anim Feed Sci Technol, 18, 169–180.
Arora, N. K., Fatima, T., Mishra, I., Verma, M., Mishra, J., & Mishra, V. (2018). Environmental sustainability: challenges and viable solutions. Environmental Sustainability, 1(4), 309–340. https://doi.org/10.1007/s42398-018-00038-w
Artegoitia, V. M., Foote, A. P., Lewis, R. M., & Freetly, H. C. (2017). Rumen fluid metabolomics analysis associated with feed efficiency on crossbred steers. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-02856-0
Asselstine, V., Lam, S., Miglior, F., Brito, L. F., Sweett, H., Guan, L., Waters, S. M., Plastow, G., & Cánovas, A. (2021). The potential for mitigation of methane emissions in ruminants through the application of metagenomics, metabolomics, and other -OMICS technologies. Journal of Animal Science, 99(10). https://doi.org/10.1093/jas/skab193
Attwood, G. T., Kelly, W. J., Altermann, E. H., Moon, C. D., Leahy, S., & Cookson, A. L. (2008). Application of rumen microbial genome information to livestock systems in the postgenomic era. Australian Journal of Experimental Agriculture, 48(7), 695. https://doi.org/10.1071/ea07408
Bath, C., Morrison, M., Ross, E. M., Hayes, B. J., & Cocks, B. G. (2013). The symbiotic rumen microbiome and cattle performance: a brief review. Animal Production Science, 53(9), 876. https://doi.org/10.1071/an12369
Beauchemin, K. A., Mcallister, T. A., & Mcginn, S. M. (2009). Dietary mitigation of enteric methane from cattle. CAB Reviews: Perspectives in Agriculture, Veterinary Science. Nutrition and Natural Resources, 035.
Beauchemin, K. A., Ungerfeld, E. M., Eckard, R. J., & Wang, M. (2020). Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal: An International Journal of Animal Bioscience, 14, s2–s16. https://doi.org/10.1017/s1751731119003100
Bell, M. J., Potterton, S. L., Craigon, J., Saunders, N., Wilcox, R. H., Hunter, M., Goodman, J. R., & Garnsworthy, P. C. (2014). Variation in enteric methane emissions among cows on commercial dairy farms. Animal: An International Journal of Animal Bioscience, 8(9), 1540–1546. https://doi.org/10.1017/s1751731114001530
Bell, M. J., Saunders, N., Wilcox, R. H., Homer, E. M., Goodman, J. R., Craigon, J., & Garnsworthy, P. C. (2014). Methane emissions among individual dairy cows during milking quantified by eructation peaks or ratio with carbon dioxide. Journal of Dairy Science, 97(10), 6536–6546. https://doi.org/10.3168/jds.2013-7889
Benson, A. K., Kelly, S. A., Legge, R., Ma, F., Low, S. J., Kim, J., Zhang, M., Oh, P. L., Nehrenberg, D., Hua, K., Kachman, S. D., Moriyama, E. N., Walter, J., Peterson, D. A., & Pomp, D. (2010). Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. Proceedings of the National Academy of Sciences of the United States of America, 107(44), 18933–18938. https://doi.org/10.1073/pnas.1007028107
Berry, D. P., & Crowley, J. J. (2013). CELL BIOLOGY SYMPOSIUM: Genetics of feed efficiency in dairy and beef cattle1. Journal of Animal Science, 91(4), 1594–1613. https://doi.org/10.2527/jas.2012-5862
Blaxter, K. L., & Clapperton, J. L. (1965). Prediction of the amount of methane produced by ruminants. The British Journal of Nutrition, 19(1), 511–522. https://doi.org/10.1079/bjn19650046
Brito, L. F., Schenkel, F. S., Oliveira, H. R., Cánovas, A., & Miglior, F. (2018). Meta-analysis of heritability estimates for methane emission indicator traits in cattle and sheep. In Proceeding of the 2018 World Congress on Genetics Applied to Livestock Production (WCGALP).
Burreson, B. J., Moore, R. E., & Roller, P. P. (1976). Volatile halogen compounds in the alga Asparagopsis taxiformis (Rhodophyta). Journal of Agricultural and Food Chemistry, 24(4), 856–861. https://doi.org/10.1021/jf60206a040
Cánovas, A. (2016). Looking ahead: Applying new genomic technologies to accelerate genetic improvement in beef cattle. CEIBA, 54(1), 41–49. https://doi.org/10.5377/ceiba.v54i1.2776
Clauss, M., Dittmann, M. T., Vendl, C., Hagen, K. B., Frei, S., Ortmann, S., Müller, D. W. H., Hammer, S., Munn, A. J., Schwarm, A., & Kreuzer, M. (2020). Review: Comparative methane production in mammalian herbivores. Animal: An International Journal of Animal Bioscience, 14, s113–s123. https://doi.org/10.1017/s1751731119003161
de Haas, Y., Pszczola, M., Soyeurt, H., Wall, E., & Lassen, J. (2017). Invited review: Phenotypes to genetically reduce greenhouse gas emissions in dairying. Journal of Dairy Science, 100(2), 855–870. https://doi.org/10.3168/jds.2016-11246
de Haas, Y., Windig, J. J., Calus, M. P. L., Dijkstra, J., de Haan, M., Bannink, A., & Veerkamp, R. F. (2011). Genetic parameters for predicted methane production and potential for reducing enteric emissions through genomic selection. Journal of Dairy Science, 94(12), 6122–6134. https://doi.org/10.3168/jds.2011-4439
Dehareng, F., Delfosse, C., Froidmont, E., Soyeurt, H., Martin, C., Gengler, N., Vanlierde, A., & Dardenne, P. (2012). Potential use of milk mid-infrared spectra to predict individual methane emission of dairy cows. Animal: An International Journal of Animal Bioscience, 6(10), 1694–1701. https://doi.org/10.1017/s1751731112000456
Dhakal, K., Tiezzi, F., Clay, J. S., & Maltecca, C. (2015). Short communication: Genomic selection for hoof lesions in firstparity US Holsteins. J. Dairy Sci, 98, 3502–3503.
Difford, G. F., Lassen, J., & Løvendahl, P. (2016). Interchangeability between methane measurements in dairy cows assessed by comparing precision and agreement of two non-invasive infrared methods. Computers and Electronics in Agriculture, 124, 220–226. https://doi.org/10.1016/j.compag.2016.04.010
Difford, Gareth Frank, Plichta, D. R., Løvendahl, P., Lassen, J., Noel, S. J., Højberg, O., Wright, A.-D. G., Zhu, Z., Kristensen, L., Nielsen, H. B., Guldbrandtsen, B., & Sahana, G. (2018). Host genetics and the rumen microbiome jointly associate with methane emissions in dairy cows. PLoS Genetics, 14(10), e1007580. https://doi.org/10.1371/journal.pgen.1007580
Duval, S., & Kindermann, M. (2012). Use of nitrooxy organic molecules in feed for reducing enteric methnae emsions in ruminants, and/or to improve ruminant performance.
Garnsworthy, P. C., Craigon, J., Hernandez-Medrano, J. H., & Saunders, N. (2012). On-farm methane measurements during milking correlate with total methane production by individual dairy cows. Journal of Dairy Science, 95(6), 3166–3180. https://doi.org/10.3168/jds.2011-4605
Gerber, P. J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., & Tempio, G. (2013). Tackling Climate Change through Livestock-A Global Assessment of Emissions and Mitigation Opportunities. Food and Agriculture Organization of the United Nations.
Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. Science (New York, N.Y.), 327(5967), 812–818. https://doi.org/10.1126/science.1185383
Goldansaz, S. A., Guo, A. C., Sajed, T., Steele, M. A., Plastow, G. S., & Wishart, D. S. (2017). Livestock metabolomics and the livestock metabolome: A systematic review. PloS One, 12(5), e0177675. https://doi.org/10.1371/journal.pone.0177675
Guarini, A. R., Lourenco, D. A. L., Brito, L. F., Sargolzaei, M., Baes, C. F., Miglior, F., Misztal, I., & Schenkel, F. S. (2019). Genetics and genomics of reproductive disorders in Canadian Holstein cattle. Journal of Dairy Science, 102(2), 1341–1353. https://doi.org/10.3168/jds.2018-15038
Hayes, B. J., Donoghue, K. A., Reich, C. M., Mason, B. A., Bird-Gardiner, T., Herd, R. M., & Arthur, P. F. (2016). Genomic heritabilities and genomic estimated breeding values for methane traits in Angus cattle1. Journal of Animal Science, 94(3), 902–908. https://doi.org/10.2527/jas.2015-0078
Hayes, Ben J., Lewin, H. A., & Goddard, M. E. (2013). The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends in Genetics: TIG, 29(4), 206–214. https://doi.org/10.1016/j.tig.2012.11.009
Henderson, G., Cook, G. M., & Ronimus, R. S. (2018). Enzyme- and gene-based approaches for developing methanogen-specific compounds to control ruminant methane emissions: a review. Animal Production Science, 58(6), 1017. https://doi.org/10.1071/an15757
Henderson, G., Cox, F., Ganesh, S., Jonker, A., Young, W., Abecia, L., Angarita, E., Aravena, P., Nora Arenas, G., Ariza, C., Attwood, G. T., Mauricio Avila, J., Avila-Stagno, J., Bannink, A., Barahona, R., Batistotti, M., Bertelsen, M. F., Brown-Kav, A., Carvajal, A. M., … Global Rumen Census Collaborators. (2015). Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Scientific Reports, 5(1). https://doi.org/10.1038/srep14567
Hook, S. E., Wright, A.-D. G., & McBride, B. W. (2010). Methanogens: Methane producers of the Rumen and mitigation strategies. Archaea (Vancouver, B.C.), 2010, 1–11. https://doi.org/10.1155/2010/945785
Hristov, A. N., Oh, J., Firkins, J. L., Dijkstra, J., Kebreab, E., Waghorn, G., Makkar, H. P. S., Adesogan, A. T., Yang, W., Lee, C., Gerber, P. J., Henderson, B., & Tricarico, J. M. (2013). SPECIAL TOPICS — Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options1. Journal of Animal Science, 91(11), 5045–5069. https://doi.org/10.2527/jas.2013-6583
Hristov, A. N., Oh, J., Lee, C., Meinen, R., Montes, F., Ott, T., Firkins, J., Rotz, A., Dell, C., Adesogan, A., Yang, W., Tricarico, J., Kebreab, E., Waghorn, G., Dijkstra, J., & Oosting, S. (2013). Mitigation of greenhouse gas emissions in livestock production: a review of technical options for non-CO2 emissions. Animal Production and Health Paper, 177, 1–226.
Hristov, Alexander N., Oh, J., Giallongo, F., Frederick, T., Weeks, H., Zimmerman, P. R., Harper, M. T., Hristova, R. A., Zimmerman, R. S., & Branco, A. F. (2015). The use of an automated system (GreenFeed) to monitor Enteric methane and carbon dioxide emissions from ruminant animals. Journal of Visualized Experiments: JoVE, 103. https://doi.org/10.3791/52904
Hungate, R. E., Smith, W., Bauchop, T., Yu, I., & Rabinowitz, J. C. (1970). Formate as an intermediate in the bovine Rumen fermentation. Journal of Bacteriology, 102(2), 389–397. https://doi.org/10.1128/jb.102.2.389-397.1970
Hurley, A. M., López-Villalobos, N., Mcparland, S., Kennedy, E., Lewis, E., Odonovan, M., Burke, J. L., & Berry, D. P. (2016). Interrelationships among alternative definitions of feed efficiency in grazing lactating dairy cows. J. Dairy Sci, 99, 468–479.
Jensen, J., Hohenboken, W. D., Madsen, P., & Andersen, B. B. (1995). Sire × nutrition interactions and genetic parameters for energy intake, production and efficiency of nutrient utilization in young bulls, heifers and lactating cows. Acta Agriculturae Scandinavica. Section A, Animal Science, 45(2), 81–91. https://doi.org/10.1080/09064709509415835
Johnson, D. E., Ward, G. W., & Ramsey, J. J. (1996). Nutrient management of food animals to enhance and protect the environment (I. T. Kornegay, Ed.). Lewis Publishers.
Johnson, Donald E., & Ward, G. M. (1996). Estimates of animal methane emissions. Environmental Monitoring and Assessment, 42(1–2), 133–141. https://doi.org/10.1007/bf00394046
Johnson, K. A., & Johnson, D. E. (1995). Methane emissions from cattle. Journal of Animal Science, 73(8), 2483–2492. https://doi.org/10.2527/1995.7382483x
Johnson, K. A., Westberg, H. H., Michal, J. J., & Cossalman, M. W. (2007). The SF6 tracer technique: Methane measurement from ruminants. In Measuring Methane Production From Ruminants (pp. 33–67). Springer Netherlands.
Kandel, P. B., Soyeurt, H., & Gengler, N. (2012). Estimation of genetic parameters for methane indicator traits based on milk fatty acids in dual purpose Belgian Blue cattle. Communications in Agricultural and Applied Biological Sciences, 77(1), 21–25.
Kim, M., Park, T., & Yu, Z. (2017). — Invited Review — Metagenomic investigation of gastrointestinal microbiome in cattle. Asian-Australasian Journal of Animal Sciences, 30(11), 1515–1528. https://doi.org/10.5713/ajas.17.0544
Knight, T., Ronimus, R. S., Dey, D., Tootill, C., Naylor, G., Evans, P., Molano, G., Smith, A., Tavendale, M., Pinares-Patiño, C. S., & Clark, H. (2011). Chloroform decreases rumen methanogenesis and methanogen populations without altering rumen function in cattle. Animal Feed Science and Technology, 166–167, 101–112. https://doi.org/10.1016/j.anifeedsci.2011.04.059
Lester, D., & Greenberg, L. A. (1950). The toxicity of sulfur hexafluoride. Archives of Industrial Hygiene and Occupational Medicine, 2(3), 348–349.
Liu, L., Xu, X., Cao, Y., Cai, C., Cui, H., & Yao, J. (2017). Nitrate decreases methane production also by increasing methane oxidation through stimulating NC10 population in ruminal culture. AMB Express, 7(1). https://doi.org/10.1186/s13568-017-0377-2
Machado, L., Magnusson, M., Paul, N. A., Kinley, R., de Nys, R., & Tomkins, N. (2016). Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. Journal of Applied Phycology, 28(5), 3117–3126. https://doi.org/10.1007/s10811-016-0830-7
Madsen, J., Bjerg, B. S., Hvelplund, T., Weisbjerg, M. R., & Lund, P. (2010). Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants. Livestock Science, 129(1–3), 223–227. https://doi.org/10.1016/j.livsci.2010.01.001
Manabe, S. (2019). Role of greenhouse gas in climate change. Tellus A Dyn. Tellus A Dyn. Tellus A Dyn. Tellus A Dyn. Meteorol. Oceanogr.
Manzanilla-Pech, C. I. V., De Haas, Y., Hayes, B. J., Veerkamp, R. F., Khansefid, M., Donoghue, K. A., Arthur, P. F., & Pryce, J. E. (2016). Genomewide association study of methane emissions in Angus beef cattle with validation in dairy cattle1. Journal of Animal Science, 94(10), 4151–4166. https://doi.org/10.2527/jas.2016-0431
Martin, C., Morgavi, D. P., & Doreau, M. (2010). Methane mitigation in ruminants: from microbe to the farm scale. Animal: An International Journal of Animal Bioscience, 4(3), 351–365. https://doi.org/10.1017/s1751731109990620
Martínez-Álvaro, M., Auffret, M. D., Stewart, R. D., Dewhurst, R. J., Duthie, C.-A., Rooke, J. A., Wallace, R. J., Shih, B., Freeman, T. C., Watson, M., & Roehe, R. (2020). Identification of complex Rumen microbiome interaction within diverse functional niches as mechanisms affecting the variation of methane emissions in bovine. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00659
Meale, S. J., Morgavi, D. P., Cassar-Malek, I., Andueza, D., Ortigues-Marty, I., Robins, R. J., Schiphorst, A.-M., Laverroux, S., Graulet, B., Boudra, H., & Cantalapiedra-Hijar, G. (2017). Exploration of biological markers of feed efficiency in young bulls. Journal of Agricultural and Food Chemistry, 65(45), 9817–9827. https://doi.org/10.1021/acs.jafc.7b03503
Morgavi, D. P., Forano, E., Martin, C., & Newbold, C. J. (2010). Microbial ecosystem and methanogenesis in ruminants. Animal: An International Journal of Animal Bioscience, 4(7), 1024–1036. https://doi.org/10.1017/s1751731110000546
Murray, R. M., Bryant, A. M., & Leng, R. A. (1976). Rates of production of methane in the rumen and large intestine of sheep. The British Journal of Nutrition, 36(1), 1–14. https://doi.org/10.1079/bjn19760053
Negussie, E., de Haas, Y., Dehareng, F., Dewhurst, R. J., Dijkstra, J., Gengler, N., Morgavi, D. P., Soyeurt, H., van Gastelen, S., Yan, T., & Biscarini, F. (2017). Invited review: Large-scale indirect measurements for enteric methane emissions in dairy cattle: A review of proxies and their potential for use in management and breeding decisions. Journal of Dairy Science, 100(4), 2433–2453. https://doi.org/10.3168/jds.2016-12030
Nguyen, T., Vieira-Silva, S., Liston, A., Raes, J., Goodrich, J. K., Waters, J. L., Poole, A. C., Sutter, J. L., Koren, O., & Blekhman, R. (2014). How informative is the mouse for humanDOIt microbioDMMresearch? Dis Model Mech. Dis Model Mech. Dis Model Mech, 8, 789–799.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., & Dasgupta, P. (2014). Synthesis Report. Contribution of Working Groups I.
Patra, A. K. (2014). Trends and projected estimates of GHG emissions from Indian livestock in comparisons with GHG emissions from world and developing countries. Asian-Australasian Journal of Animal Sciences, 27(4), 592–599. https://doi.org/10.5713/ajas.2013.13342
Patterson, J. A., & Hespell, R. B. (1979). Trimethylamine and methylamine as growth substrates for rumen bacteria and Methanosarcina barkeri. Current Microbiology, 3(2), 79–83.
Pickering, N. K., Chagunda, M. G. G., Banos, G., Mrode, R., McEwan, J. C., & Wall, E. (2015). Genetic parameters for predicted methane production and laser methane detector measurements1. Journal of Animal Science, 93(1), 11–20. https://doi.org/10.2527/jas.2014-8302
Pickering, N. K., Oddy, V. H., Basarab, J., Cammack, K., Hayes, B., Hegarty, R. S., Lassen, J., McEwan, J. C., Miller, S., Pinares-Patiño, C. S., & de Haas, Y. (2015). Animal board invited review: genetic possibilities to reduce enteric methane emissions from ruminants. Animal: An International Journal of Animal Bioscience, 9(9), 1431–1440. https://doi.org/10.1017/s1751731115000968
Pszczola, M., Strabel, T., Mucha, S., & Sell-Kubiak, E. (2018). Genome-wide association identifies methane production level relation to genetic control of digestive tract development in dairy cows. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-33327-9
Ripple, W. J., Smith, P., Haberl, H., Montzka, S. A., McAlpine, C., & Boucher, D. H. (2014). Ruminants, climate change and climate policy. Nature Climate Change, 4(1), 2–5. https://doi.org/10.1038/nclimate2081
Roehe, R., Dewhurst, R. J., Duthie, C.-A., Rooke, J. A., McKain, N., Ross, D. W., Hyslop, J. J., Waterhouse, A., Freeman, T. C., Watson, M., & Wallace, R. J. (2016). Bovine host genetic variation influences Rumen microbial methane production with best selection criterion for low methane emitting and efficiently feed converting hosts based on metagenomic gene abundance. PLoS Genetics, 12(2), e1005846. https://doi.org/10.1371/journal.pgen.1005846
Roque, B. M., Brooke, C. G., Ladau, J., Polley, T., Marsh, L. J., Najafi, N., Pandey, P., Singh, L., Kinley, R., Salwen, J. K., Eloe-Fadrosh, E., Kebreab, E., & Hess, M. (2019). Correction to: Effect of the macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage. Animal Microbiome, 1(1). https://doi.org/10.1186/s42523-019-0005-3
Rowe, S., Mcewan, J. C., Hickey, S. M., Anderson, R. A., Hyndman, D., Young, E., Baird, H., Dodds, K. G., Pinares-Patiño, C. S., & Pickering, N. K. (2014). Genomic selection as a tool to decrease greenhouse gas emissions from dual-purpose New Zealand sheep. In Proc, 10th World Congress of Genetics Applied to Livestock Production.
Saleem, F., Bouatra, S., Guo, A. C., Psychogios, N., Mandal, R., Dunn, S. M., Ametaj, B. N., & Wishart, D. S. (2013). The bovine ruminal fluid metabolome. Metabolomics: Official Journal of the Metabolomic Society, 9(2), 360–378. https://doi.org/10.1007/s11306-012-0458-9
Sarghale, A. J., Shahrebabak, M. M., Shahrebabak, H. M., Javaremi, A. N., Saatchi, M., Khansefid, M., & Miar, Y. (2020). Genome-wide association studies for methane emission and ruminal volatile fatty acids using Holstein cattle sequence data. In Research Square. https://doi.org/10.21203/rs.2.20637/v1
Seshadri, R., Hungate1000 project collaborators, Leahy, S. C., Attwood, G. T., Teh, K. H., Lambie, S. C., Cookson, A. L., Eloe-Fadrosh, E. A., Pavlopoulos, G. A., Hadjithomas, M., Varghese, N. J., Paez-Espino, D., Perry, R., Henderson, G., Creevey, C. J., Terrapon, N., Lapebie, P., Drula, E., Lombard, V., … Kelly, W. J. (2018). Cultivation and sequencing of rumen microbiome members from the Hungate1000 Collection. Nature Biotechnology, 36(4), 359–367. https://doi.org/10.1038/nbt.4110
Sobrinho, T. L. P., Branco, R. H., Magnani, E., Berndt, A., Canesin, R. C., & Mercadante, M. E. Z. (2018). Development and evaluation of prediction equations for methane emission from Nellore cattle Dry matter intake (DMI. Acta Scientiarum. Animal Sciences, 41(1), 42559. https://doi.org/10.4025/actascianimsci.v41i1.42559
Storm, I. M. L. D., Hellwing, A. L. F., Nielsen, N. I., & Madsen, J. (2012). Methods for measuring and estimating methane emission from ruminants. Animals: An Open Access Journal from MDPI, 2(2), 160–183. https://doi.org/10.3390/ani2020160
Ungerfeld, E. M., Rust, S. R., Boone, D. R., & Liu, Y. (2004). Effects of several inhibitors on pure cultures of ruminal methanogens. Journal of Applied Microbiology, 97(3), 520–526. https://doi.org/10.1111/j.1365-2672.2004.02330.x
Ursell, L. K., Haiser, H. J., Van Treuren, W., Garg, N., Reddivari, L., Vanamala, J., Dorrestein, P. C., Turnbaugh, P. J., & Knight, R. (2014). The intestinal metabolome: An intersection between Microbiota and host. Gastroenterology, 146(6), 1470–1476. https://doi.org/10.1053/j.gastro.2014.03.001
van Engelen, S., Bovenhuis, H., van der Tol, P. P. J., & Visker, M. H. P. W. (2018). Genetic background of methane emission by Dutch Holstein Friesian cows measured with infrared sensors in automatic milking systems. Journal of Dairy Science, 101(3), 2226–2234. https://doi.org/10.3168/jds.2017-13441
Vanlierde, A., Vanrobays, M. L., Dehareng, F., Froidmont, E., Soyeurt, H., Mcparland, S., Lewis, E., Deighton, M. H., Grandl, F., & Kreuzer, M. (2015). Hot topic: innovative lactation-stagedependent prediction of methane emissions from milk mid-infrared spectra. J. Dairy Sci, 98, 5740–5747.
Wagner, T., Wegner, C.-E., Kahnt, J., Ermler, U., & Shima, S. (2017). Phylogenetic and structural comparisons of the three types of methyl coenzyme M reductase from Methanococcales and Methanobacteriales. Journal of Bacteriology, 199(16). https://doi.org/10.1128/jb.00197-17
Wallace, R. J., Rooke, J. A., McKain, N., Duthie, C.-A., Hyslop, J. J., Ross, D. W., Waterhouse, A., Watson, M., & Roehe, R. (2015). The rumen microbial metagenome associated with high methane production in cattle. BMC Genomics, 16(1). https://doi.org/10.1186/s12864-015-2032-0
Xue, M.-Y., Sun, H.-Z., Wu, X.-H., Liu, J.-X., & Guan, L. L. (2020). Multi-omics reveals that the rumen microbiome and its metabolome together with the host metabolome contribute to individualized dairy cow performance. Microbiome, 8(1). https://doi.org/10.1186/s40168-020-00819-8
Yu, Z., & Smith, G. B. (2000). Inhibition of methanogenesis by C1- and C2-polychlorinated aliphatic hydrocarbons. Environmental Toxicology and Chemistry, 19(9), 2212–2217. https://doi.org/10.1002/etc.5620190910
Zimmerman, P., Zimmerman, S., Utsumi, S., & Beede, D. (2011). Development of a user-friendly online system to measure metabolic gas fluxes from ruminants. J. Dairy Sci.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Anuradha Panwar, Harshit Kumar, Chhaya Rani, Mahaling Bhure
This work is licensed under a Creative Commons Attribution 4.0 International License.