Antimicrobial Resistance in Bacteria- Its Origin and Evolution: A Review
DOI:
https://doi.org/10.5455/ijlr.20201017065035Keywords:
Antimicrobial Resistance, Alternative Therapy, EvolutionAbstract
Antibiotic era was started with the great discovery of penicillin which influenced the existence of humanity. Many novel antibiotics were discovered during the year 1950 to 1960, termed as golden era for antibiotics. Soon after the discovery of several antibiotics, antimicrobial resistance had started emerging. With emerging resistance and non-availability of new antibiotics we are heading towards post antibiotic era. As antimicrobial resistance is becoming a global public health threat, we need an alternative therapy to protect human health. To combat this situation, we need to focus on where antimicrobial resistance originated and the factors associated with its spread. In this review, we have highlighted the history behind origin of antimicrobial resistance, its evolution timeline, drivers of antimicrobial resistance, mechanism of resistance developed and alternative approaches and interventions to combat with this situation keeping an eye on the Indian scenario as well.
References
Ahmed, M. B., Zhou, J. L., Ngo, H. H. & Guo, W. (2015). Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Science of the Total Environment, 532, 112-126. DOI: 10.1016/j.scitotenv.2015.05.130.
Akiba, M., Senba, H., Otagiri, H., Prabhasankar, V. P., Taniyasu, S., Yamashita, N., Lee, K.I., Yamamoto, T., Tsutsui, T., Joshua, D.I. & Balakrishna, K. (2015). Impact of wastewater from different sources on the prevalence of antimicrobial-resistant Escherichia coli in sewage treatment plants in South India. Ecotoxicology and Environmental Safety, 115, 203-208. DOI: 10.1016/j.ecoenv.2015.02.018.
Alekshun, M. N. & Levy, S. B. (2007). Molecular mechanisms of antibacterial multidrug resistance. Cell, 128(6), 1037-1050. DOI: 10.1016/j.cell.2007.03.004.
Ali, J., Rafiq, Q. A. & Ratcliffe, E. (2018). Antimicrobial resistance mechanisms and potential synthetic treatments. Future Science OA, 4(4), FSO290. DOI: 10.4155/fsoa-2017-0109.
Al-Riyami, I. M., Ahmed, M., Al-Busaidi, A. & Choudri, B. S. (2018). Antibiotics in wastewaters: a review with focus on Oman. Applied Water Science, 8(7), 199. DOI: 10.1007/s13201-018-0846-z.
Baker-Austin, C., Wright, M. S., Stepanauskas, R. & McArthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends in Microbiology, 14(4), 176-182. DOI: 10.1016/j.tim.2006.02.006.
Berendsen, B. J. A., Lahr, J., Nibbeling, C., Jansen, L. J. M., Bongers, I. E. A., Wipfler, E. L. & Van de Schans, M. G. M. (2018). The persistence of a broad range of antibiotics during calve, pig and broiler manure storage. Chemosphere, 204, 267-276. DOI: 10.1016/j.chemosphere.2018.04.042.
Bhattacharyya, D., Banerjee, J., Bandyopadhyay, S., Mondal, B., Nanda, P. K., Samanta, I., Mahanti, A., Das, A.K., Das, G., Dandapat, P. & Bandyopadhyay, S. (2016). First report on vancomycin-resistant Staphylococcus aureus in bovine and caprine milk. Microbial Drug Resistance, 22(8), 675-681. DOI: 10.1089/mdr.2015.0330.
Bhoomika, A. K., Thakur, P., Gourkhede, D., & Vivekanandhan, R. (2019). Antimicrobial peptides: As an emerging alternative to combat drug resistant. Journal of Pharmacognosy and Phytochemistry, 8(3), 2658-2663.
Blaser, M., Carrs, O., Cassell, G., Fishman, N., Guidos, R., Levy, S., Powers, J., Norrby, R. and & Tillotson, G. (2011). Discovery research: the scientific challenge of finding new antibiotics. Journal of Antimicrobial Chemotherapy, 66(9), 1941-1944. DOI: 10.1093/jac/dkr262.
Brower, C. H., Mandal, S., Hayer, S., Sran, M., Zehra, A., Patel, S. J., Kaur, R., Chatterjee, L., Mishra, S., Das, B.R. & Singh, P. (2017). The prevalence of extended-spectrum beta-lactamase-producing multidrug-resistant Escherichia coli in poultry chickens and variation according to farming practices in Punjab, India. Environmental Health Perspectives, 125(7), 077015. DOI: 10.1289/EHP292.
Bushak L. (2016). A brief history of antibiotic resistance: how a medical miracle turned into the biggest public health danger of our time. Medical Daily. Available at http://www.medicaldaily. com/antibiotic-resistance-history-373773, viewed on 27th August, 2020.
Centre for disease control and prevention (CDC). (2019). Infographic: antibiotic resistance the global threat. Retrieved from https://www.cdc.gov/globalhealth/infographics/antibiotic resistance/antibiotic_resistance_global_threat.htm. Accessed on 22nd June, 2019.
Centre for Disease Dynamics, Economics & Policy (CDDEP). (2015). Retrieved from https://cddep.org/publications/state_worlds_antibiotics_2015/. Accessed on 12th May, 2020.
Chen, Y., Yu, G., Cao, Q., Zhang, H., Lin, Q. & Hong, Y. (2013). Occurrence and environmental implications of pharmaceuticals in Chinese municipal sewage sludge. Chemosphere, 93(9), 1765-1772. DOI: 10.1016/j.chemosphere.2013.06.007.
Counsell, D. J. (2006). Intoxicants in Ancient Egypt: The Application of Modern Forensic Analytical Techniques to Ancient Artefacts and Mummified Remains in the Evaluation of Drug Use by an Ancient Society: A Historical and Scientific Investigation. The University of Manchester (United Kingdom).
Cox, G. & Wright, G. D. (2013). Intrinsic antibiotic resistance: mechanisms, origins, challenges and solutions. International Journal of Medical Microbiology, 303(6-7), 287-292. DOI: 10.1016/j.ijmm.2013.02.009.
Cuong, N. V., Padungtod, P., Thwaites, G. & Carrique-Mas, J. J. (2018). Antimicrobial usage in animal production: a review of the literature with a focus on low-and middle-income countries. Antibiotics, 7(3), 75. DOI: 10.3390/antibiotics7030075.
D’Costa, V. M., King, C. E., Kalan, L., Morar, M., Sung, W. W., Schwarz, C., Froese, D., Zazula, G., Calmels, F., Debruyne, R. & Golding, G. B. (2011). Antibiotic resistance is ancient. Nature, 477(7365), 457-461. DOI: 10.1038/nature10388.
Das, S. & Basak, S. (2017). ESBL Producing Pseudomonas aeruginosa: A Threat to Patient Care. International Journal of Health Sciences and Research, 7(4), 132-7.
Davies, J. & Davies, D. (2010). Origins and evolution of antibiotic resistance. Microbiology and Molecular Biology Reviews, 74(3), 417-433. DOI: 10.1128/MMBR.00016-10.
Dixit, A., Kumar, N., Kumar, S., & Trigun, V. (2019). Antimicrobial resistance: Progress in the decade since emergence of New Delhi metallo-β-lactamase in India. Indian journal of community medicine: official publication of Indian Association of Preventive & Social Medicine, 44(1), 4. DOI: 10.4103/ijcm.IJCM_217_18.
Dodgen, L. K. & Zheng, W. (2016). Effects of reclaimed water matrix on fate of pharmaceuticals and personal care products in soil. Chemosphere, 156, 286-293. DOI: 10.1016/j.chemosphere.2016.04.109.
Finley, S., Barrington, S. & Lyew, D. (2009). Reuse of domestic greywater for the irrigation of food crops. Water, Air, and Soil Pollution, 199(1-4), 235-245. DOI: 10.1007/s11270-008-9874-x.
Food and Agricultural Organization (FAO). (2016). The FAO action plan on Antimicrobial resistance 2016-2020. Retrieved from http://www.fao.org/3/a-i5996e.pdf. Accessed on 12th May, 2020.
Gandra, S., Joshi, J., Trett, A., Lamkang, A. S. & Laxminarayan, R. (2017). Scoping report on antimicrobial resistance in India. Washington, DC: Centre for Disease Dynamics, Economics & Policy.
Gandra, S., Mojica, N., Klein, E. Y., Ashok, A., Nerurkar, V., Kumari, M., Ramesh, U., Dey, S., Vadwai, V., Das, B.R. & Laxminarayan, R. (2016). Trends in antibiotic resistance among major bacterial pathogens isolated from blood cultures tested at a large private laboratory network in India, 2008–2014. International Journal of Infectious Diseases, 50, 75-82. DOI: 10.1016/j.ijid.2016.08.002.
Gelband, H., Molly Miller, P., Pant, S., Gandra, S., Levinson, J., Barter, D., White, A. & Laxminarayan, R. (2015). The state of the world's antibiotics 2015. Wound Healing Southern Africa, 8(2), 30-34.
Ghatak, S., Singha, A., Sen, A., Guha, C., Ahuja, A., Bhattacharjee, U., Das, S., Pradhan, N.R., Puro, K., Jana, C. & Dey, T. K. (2013). Detection of New Delhi Metallo‐beta‐Lactamase and Extended‐Spectrum beta‐Lactamase Genes in Escherichia coli Isolated from Mastitic Milk Samples. Transboundary and Emerging Diseases, 60(5), 385-389. DOI: 10.1111/tbed.12119.
Gourkhede, D. P., Bhoomika, S., Pathak, R., Yadav, J. P., Nishanth, D., Vergis, J., Malik, S.V.S., Barbuddhe, S.B. & Rawool, D. B. (2020b). Antimicrobial efficacy of Cecropin A (1–7)-Melittin and Lactoferricin (17–30) against multi-drug resistant Salmonella Enteritidis. Microbial Pathogenesis, 147, 104405. DOI: 10.1016/j.micpath.2020.104405.
Gourkhede, D., Wankhade, P., Ram, V., Kandhan, S., Sakhare, D. & Talokar, A. (2020a). Application of Bacteriophages in Food Industry: A Review. International Journal of Livestock Research, 10(9), 1-7. DOI: 10.5455/ijlr.20200506 115451.
Grace, C. (2004). The effect of changing intellectual property on pharmaceutical industry prospects in India and China. DFID Health Systems Resource Centre, 1-68.
Hollenbeck, B. L. & Rice, L. B. (2012). Intrinsic and acquired resistance mechanisms in Enterococcus. Virulence, 3(5), 421-569. DOI:10.4161/viru.21282.
Hwang, A. Y., & Gums, J. G. (2016). The emergence and evolution of antimicrobial resistance: Impact on a global scale. Bioorganic and Medicinal Chemistry, 24(24), 6440-6445. DOI: 10.1016/j.bmc.2016.04.027.
Karthik, K., Muneeswaran, N. S., Manjunathachar, H. V., Gopi, M., Elamurugan, A. & Kalaiyarasu, S. (2014). Bacteriophages: effective alternative to antibiotics. Advances in Animal and Veterinary Sciences, 2(3), 1-7. DOI: 10.14737/journal.aavs/2014/2.3s.1.7.
Kaur, A., Gandra, S., Gupta, P., Mehta, Y., Laxminarayan, R., & Sengupta, S. (2017). Clinical outcome of dual colistin-and carbapenem-resistant Klebsiella pneumoniae bloodstream infections: A single-center retrospective study of 75 cases in India. American Journal of Infection Control, 45(11), 1289-1291. DOI: 10.1016/j.ajic.2017.06.028.
Kinney, C. A., Furlong, E. T., Zaugg, S. D., Burkhardt, M. R., Werner, S. L., Cahill, J. D. & Jorgensen, G. R. (2006). Survey of organic wastewater contaminants in biosolids destined for land application. Environmental Science & Technology, 40(23), 7207-7215. DOI: 10.1021/es0603406.
Kumar, A., Gill, J. P. S., Bedi, J. S., Chhuneja, P. K., & Kumar, A. (2020). Determination of antibiotic residues in Indian honeys and assessment of potential risks to consumers. Journal of Apicultural Research, 59(1), 25-34. DOI: 10.1080/00218839.2019.1677000.
Kumar, A., Patyal, A., & Panda, A. K. (2018). Sub-therapeutic use of antibiotics in animal feed and their potential impact on environmental and human health: a comprehensive review. Journal of Animal Feed Science and Technology, 6(15), 25. DOI: 10.21088/jafst.2321.1628.6118.3.
Kumari, T., Bhakat, C. & Choudhary, R. (2019). Use of Herbal Preparations in Dry Cow Management against Sub Clinical Mastitis - An Alternative Approach. International Journal of Livestock Research, 9(3), 21-27. DOI: 10.5455/ijlr.20180215053754.
Kyselkova, M., Jirout, J., Vrchotova, N., Schmitt, H. & Elhottova, D. (2015). Spread of tetracycline resistance genes at a conventional dairy farm. Frontiers in Microbiology, 6, 536. DOI: 10.3389/fmicb.2015.00536.
Laxminarayan, R., Matsoso, P., Pant, S., Brower, C., Røttingen, J. A., Klugman, K. & Davies, S. (2016). Access to effective antimicrobials: a worldwide challenge. The Lancet, 387(10014), 168-175. DOI:10.1016/S0140-6736(15)00474-2.
Li, B. & Zhang, T. (2010). Biodegradation and adsorption of antibiotics in the activated sludge process. Environmental Science & Technology, 44(9), 3468-3473. DOI: 10.1021/es903490h.
Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X. & Yu, L. F. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet Infectious Diseases, 16(2), 161-168. DOI: 10.1016/S1473-3099(15)00424-7.
Luepke, K. H., Suda, K. J., Boucher, H., Russo, R. L., Bonney, M. W., Hunt, T. D., & Mohr III, J. F. (2017). Past, present, and future of antibacterial economics: increasing bacterial resistance, limited antibiotic pipeline, and societal implications. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 37(1), 71-84. DOI: 10.1002/phar.1868.
Luo, Y., Yang, F., Mathieu, J., Mao, D., Wang, Q. & Alvarez, P. J. J. (2014). Proliferation of multidrug-resistant New Delhi metallo-β-lactamase genes in municipal wastewater treatment plants in northern China. Environmental Science & Technology Letters, 1(1), 26-30. DOI: 10.1021/ez400152e.
Lusiak-Szelachowska, M., Weber-Dąbrowska, B., & Gorski, A. (2020). Bacteriophages and lysins in biofilm control. Virologica Sinica, 1-9. DOI: 10.1007/s12250-019-00192-3.
Manohar, P., Shanthini, T., Ayyanar, R., Bozdogan, B., Wilson, A., Tamhankar, A. J., Nachimuthu, R. & Lopes, B. S. (2017). The distribution of carbapenem-and colistin-resistance in Gram-negative bacteria from the Tamil Nadu region in India. Journal of Medical Microbiology, 66(7), 874-883. DOI: 10.1099/jmm.0.000508.
Manyi-Loh, C., Mamphweli, S., Meyer, E. & Okoh, A. (2018). Antibiotic use in agriculture and its consequential resistance in environmental sources: potential public health implications. Molecules, 23(4), 795. DOI: 10.3390/molecules23040795.
McManus, P. S., Stockwell, V. O., Sundin, G. W., & Jones, A. L. (2002). Antibiotic use in plant agriculture. Annual Review of Phytopathology, 40(1), 443-465. DOI: https://doi.org/10.1002/phar.1868.
Mitchell, S. M., Subbiah, M., Ullman, J. L., Frear, C. & Call, D. R. (2015). Evaluation of 27 different biochars for potential sequestration of antibiotic residues in food animal production environments. Journal of Environmental Chemical Engineering, 3(1), 162-169. DOI: 10.1016/j.jece.2014.11.012.
Morehead, M. S., & Scarbrough, C. (2018). Emergence of global antibiotic resistance. Primary care: clinics in office practice, 45(3), 467-484. DOI: 10.1016/j.pop.2018.05.006.
Muhammad, J., Khan, S., Su, J. Q., Hesham, A. E. L., Ditta, A., Nawab, J. & Ali, A. (2020). Antibiotics in poultry manure and their associated health issues: a systematic review. Journal of Soils and Sediments, 20(1), 486-497. DOI: 10.1007/s11368-019-02360-0.
Munita, J. M. & Arias, C. A. (2016). Mechanisms of antibiotic resistance. Virulence Mechanisms of Bacterial Pathogens, 481-511. DOI: 10.1128/9781555819286.ch17.
Naik, V. K., Shakya, S., Patyal, A. & Gade, N. E. (2015). Isolation and molecular characterization of Salmonella spp. from chevon and chicken meat collected from different districts of Chhattisgarh, India. Veterinary World, 8(6), 702. DOI: 10.14202/vetworld.2015.702-706.
NORDEA. (2015). Nordea annual report. Retrieved from https://www.nordea.com/Images/33-102773/2015-12-31_Annual-Report-2015-Nordea-Bank-AB_EN.pdf. Accessed on 12th May, 2020.
Nsofor, C. A. (2016). Molecular Mechanisms of Antimicrobial Resistance in Bacteria of Public Health Important. Journal of Biotechnology Research, 2(12), 92-100.
O’Neill J. (2016). Tackling Drug-resistant Infections Globally: Final Report and Recommendations–The Review on Antimicrobial Resistance Chaired by Jim O’Neill. Wellcome Trust and HM Government, London. Retrieved from https://amr-review.org/sites/default/files/160518_Final%20paper_with%20cover.pdf. Accessed on 12th May, 2020.
Osterhaus, A. D., Vanlangendonck, C., Barbeschi, M., Bruschke, C. J., Christensen, R., Daszak, P., ... & Hamilton, K. (2020). Make science evolve into a One Health approach to improve health and security: a white paper. One Health Outlook, 2, 1-32. DOI: 10.1186/s42522-019-0009-7.
Pragasam, A. K., Shankar, C., Veeraraghavan, B., Biswas, I., Nabarro, L. E., Inbanathan, F. Y., George, B. & Verghese, S. (2017). Molecular mechanisms of colistin resistance in Klebsiella pneumoniae causing bacteremia from India-a first report. Frontiers in Microbiology, 7, 2135. DOI: 10.3389/fmicb.2016.02135.
Rappuoli, R., Bloom, D. E. & Black, S. (2017). Deploy vaccines to fight superbugs. Nature, 552, 165-167. DOI: 10.1038/d41586-017-08323-0.
Rivera-Utrilla, J., Sánchez-Polo, M., Ferro-García, M. A., Prados-Joya, G. & Ocampo-Pérez, R. (2013). Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere, 93(7),1268-1287. DOI: 10.1016/j.chemosphere.2013.07.059.
Samanta, I., Joardar, S. N., Mahanti, A., Bandyopadhyay, S., Sar, T. K. & Dutta, T. K. (2015). Approaches to characterize extended spectrum beta-lactamase/beta-lactamase producing Escherichia coli in healthy organized vis-a-vis backyard farmed pigs in India. Infection, Genetics and Evolution, 36, 224-230. DOI: 10.1016/j.meegid.2015.09.021.
Saran, S., Rao, N. S. & Azim, A. (2020). New and promising anti-bacterials: Can this promise be sustained. Journal of Anaesthesiology, Clinical Pharmacology, 36(1), 13. DOI: 10.4103/joacp.JOACP_113_19.
Sarmah, A. K., Meyer, M. T. & Boxall, A. B. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere, 65(5), 725-759. DOI: 10.1016/j.chemosphere.2006.03.026.
Siguier, P., Gourbeyre, E. & Chandler, M. (2014). Bacterial insertion sequences: their genomic impact and diversity. FEMS Microbiology Reviews, 38(5), 865-891. DOI: 10.1111/1574-6976.12067.
Singer, A. C., Shaw, H., Rhodes, V. & Hart, A. (2016). Review of antimicrobial resistance in the environment and its relevance to environmental regulators. Frontiers in Microbiology, 7, 1728. https://doi.org/10.3389/fmicb.2016.01728.
Singh, S., Singh, S. K., Chowdhury, I. & Singh, R. (2017). Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. The open Microbiology Journal, 11, 53. DOI: 10.2174/1874285801711010053.
Sommer, M. O., Munck, C., Toft-Kehler, R. V. & Andersson, D. I. (2017). Prediction of antibiotic resistance: time for a new preclinical paradigm. Nature Reviews Microbiology, 15(11), 689-696. DOI: 10.1038/nrmicro.2017.75.
Srivastava, S. (2017). 4 Bacterial Integrons. In Biotechnology: Recent Trends and Emerging Dimensions, Boca raton, FL: CRC Press, 57-74.
Tenover, F. C. (2006). Mechanisms of antimicrobial resistance in bacteria. The American Journal of Medicine, 119(6), S3-S10. DOI: 10.1016/j.amjmed.2006.03.011.
Thakur, A., Kumar, A., Sharma, M., Kumar, R., & Vanita, B. (2019). Strategies to Minimize the Impact of Antibiotic Resistance in Livestock Production System. International Journal of Current Microbiology and Applied Sciences, 8(3), 2293-2310. DOI: 10.20546/ijcmas.2019.803.273.
Troiano, E., Beneduce, L., Gross, A. & Ronen, Z. (2018). Antibiotic-resistant bacteria in greywater and greywater-irrigated soils. Frontiers in Microbiology, 9, 2666. DOI: 10.3389/fmicb.2018.02666.
UNESCO-IHE. (2011). Annual report 2011. Retrieved from https://www.un-ihe.org/sites/default/files/annual_report_2011.pdf. Accessed on 12th May, 2020.
Van Boeckel, T. P., Brower, C., Gilbert, M., Grenfell, B. T., Levin, S. A., Robinson, T. P., Teillant, A. & Laxminarayan, R. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences, 112(18), 5649-5654. DOI: 10.1073/pnas.1503141112.
Van Epps, A. & Blaney, L. (2016). Antibiotic residues in animal waste: occurrence and degradation in conventional agricultural waste management practices. Current Pollution Reports, 2(3), 135-155. DOI: 10.1007/s40726-016-0037-1.
Verlicchi, P. & Zambello, E. (2014). How efficient are constructed wetlands in removing pharmaceuticals from untreated and treated urban wastewaters? A review. Science of the Total Environment, 470, 1281-1306. DOI: 10.1016/j.scitotenv.2013.10.085.
Versporten, A., Bolokhovets, G., Ghazaryan, L., Abilova, V., Pyshnik, G., Spasojevic, T., Korinteli, I., Raka, L., Kambaralieva, B., Cizmovic, L. & Carp, A. (2014). Antibiotic use in eastern Europe: a cross-national database study in coordination with the WHO Regional Office for Europe. The Lancet Infectious Diseases, 14(5), 381-387. DOI: 10.1016/S1473-3099(14)70071-4.
VKM Report. (2015). The risk of development of antimicrobial resistance with the use of coccidiostats in poultry diets. Retrieved from https://vkm.no/download/18.2994e95b15cc5450716152d3/1498142579152/0025301628.pdf330. Accessed on 12th May, 2020.
Wales, A. D. & Davies, R. H. (2015). Co-selection of resistance to antibiotics, biocides and heavy metals, and its relevance to foodborne pathogens. Antibiotics, 4(4), 567-604. DOI: 10.3390/antibiotics4040567.
Webber, M. A., Whitehead, R. N., Mount, M., Loman, N. J., Pallen, M. J. & Piddock, L. J. (2015). Parallel evolutionary pathways to antibiotic resistance selected by biocide exposure. Journal of Antimicrobial Chemotherapy, 70(8), 2241-2248. DOI: 10.1093/jac/dkv109.
Wichmann, F., Udikovic Kolic, N., Andrew, S. & Handelsman, J. (2014). Diverse antibiotic resistance genes in dairy cow manure. MBio, 5(2). DOI: 10.1128/mBio.01017-13.
World Bank. (2017). Annual report. Retrieved from http://documents.worldbank.org/curated/en/143021506909711004/World-Bank-Annual-Report-2017. Accessed on 12th May, 2020.
World Health Organization (WHO). (2018a). Report on surveillance of antibiotic consumption 2018. Retrieved from https://www.who.int/medicines/areas/rational_use/who-amr-amc-report-20181109.pdf. Accessed on 18th July, 2018.
World Health Organization (WHO). (2018b). Global antimicrobial resistance surveillance system report 2016-2017. Retrieved from https://www.who.int/docs/default-source/searo/amr/global-antimicrobial-resistance-surveillance-system-(glass)-report-early-implementation-2016-2017.pdfsfvrsn=ea19cc4a_2. Accessed on 18th July, 2018.
Zhang, R., Sun, P., Boyer, T. H., Zhao, L. & Huang, C. H. (2015). Degradation of pharmaceuticals and metabolite in synthetic human urine by UV, UV/H2O2, and UV/PDS. Environmental Science & Technology, 49(5), 3056-3066. DOI: 10.1021/es504799n.
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution 4.0 International License.