Review on Roles of Streptococcus agalactiae in Bovine Mastitis
Keywords:
Bovine, Mastitis, Subclinical, Streptococcus agalactiaeAbstract
Streptococcus agalactiae continues to be a major cause of subclinical mastitis in dairy cattle and a source of economic loss for the industry. It is considered to be a costly disease of dairy animals and losses mainly occur through discarded milk, reduction in milk yield, premature culling of animals, and replacements. Streptococcus agalactiae is one of the etiological agents of bovine mastitis. The disease causes considerable direct and indirect economic losses to the livestock sector. Streptococcus agalactiae is well known worldwide as a major contagious pathogen causing bovine subclinical mastitis, which may substantially impact on the quantity and quality of milk produced. This pathogen can survive for long periods only within the mammary gland. This form of mastitis is characterized by a change in milk composition with no signs of gross inflammation or milk abnormalities. Special diagnostic tests can detect changes in milk composition. Diagnosis of subclinical infection is more problematic since the milk appears normal but usually has an elevated somatic cell count (SCC). Diagnosis of subclinical mastitis can be made in various ways, including direct measurement of the SCC level or indirectly by performing a California Mastitis Test (CMT) on suspected quarters. Streptococcus agalactiae is exquisitely sensitive to intramammary therapy using a variety of commercially available antibiotics. Treating Streptococcus agalactiae mastitis will be considered profitable if the dairy producer is faced with losing a market for milk. This review describes the importance of Streptococcus agalactiae infections in dairy industries in losses of milk production and quality of milk.
References
Acquaviva, R., D’Angeli, F., Malfa, G. A., Ronsisvalle, S., Garozzo, A., Stivala, A., ... and Genovese, C. (2021). Antibacterial and anti-biofilm activities of walnut pellicle extract
Åkerstedt, M., Wredle, E., Lam, V., & Johansson, M. (2012). Protein degradation in bovine milk caused by Streptococcus agalactiae. Journal of dairy research, 79(3), 297-303.
Barkema, H. W., Green, M. J., Bradley, A. J., & Zadoks, R. N. (2009). Invited review: The role of contagious disease in udder health. Journal of dairy science, 92(10), 4717-4729.
Borucki Castro, S. I., Berthiaume, R., Laffey, P., Fouquet, A., Beraldin, F., Robichaud, A., Lacasse, P. (2010). Iodine concentration in milk sampled from Canadian farms. Journal of food protection, 73(9), 1658-1663.
Bradley, A. J. (2002). Bovine mastitis: an evolving disease. The veterinary journal, 164(2), 116-128.
Cheng, W. N., & Han, S. G. (2020). Bovine mastitis: Risk factors, therapeutic strategies, and alternative treatments—A review. Asian-Australasian journal of animal sciences, 33(11), 1699.
Dego, O. K. (2020). Current status of antimicrobial resistance and prospect for new vaccines against major bacterial bovine mastitis pathogens. In Animal Reproduction in Veterinary Medicine (p. 78921). London, UK: Intech Open.
Elmoslemany, A. M., Keefe, G. P., Dohoo, I. R., Wichtel, J. J., Stryhn, H., & Dingwell, R. T. (2010). The association between bulk tank milk analysis for raw milk quality and on-farm management practices. Preventive veterinary medicine, 95(1-2), 32-40.
Guérin-Faublée, V., Tardy, F., Bouveron, C., and Carret, G. (2002). Antimicrobial susceptibility of Streptococcus species isolated from clinical mastitis in dairy cows. International journal of antimicrobial agents, 19(3), 219-226.
Gurjar, A., Gioia, G., Schukken, Y., Welcome, F., Zadoks, R., and Moroni, P. (2012). Molecular diagnostics applied to mastitis problems on dairy farms. Veterinary clinics: Food animal practice, 28(3), 565-576.
Izquierdo, A. C., Liera, J. G., Cervantes, R. E., Castro, J. I., Mancera, E. V., Crispin, R. H., ... and Denis, B. R. (2017). Production of milk and bovine mastitis. J Adv Dairy Res, 5(2), 1-4.
Jones, C. G. Wright, J. P., & (2006). The concept of organisms as ecosystem engineers ten years on: progress, limitations, and challenges. BioScience, 56(3), 203-209.
Kabelitz, T., Aubry, E., van Vorst, K., Amon, T., and Fulde, M. (2021). The Role of Streptococcus spp. in Bovine Mastitis. Microorganisms, 9(7), 1497.
Katholm, J., Bennedsgaard, T. W., Koskinen, M. T., and Rattenborg, E. (2012). Quality of bulk tank milk samples from Danish dairy herds based on real-time polymerase chain reaction identification of mastitis pathogens. Journal of dairy science, 95(10), 5702-5708.
Keefe, G. (2012). Update on control of Staphylococcus aureus and Streptococcus agalactiae for management of mastitis. Veterinary Clinics: Food Animal Practice, 28(2), 203-216.
Krömker, V., and Leimbach, S. (2017). Mastitis treatment—Reduction in antibiotic usage in dairy cows. Reproduction in Domestic Animals, 52, 21-29.
Lammers, A., van Vorstenbosch, C. J., Erkens, J. H., and Smith, H. E. (2001). The major bovine mastitis pathogens have different cell tropisms in cultures of bovine mammary gland cells. Veterinary Microbiology, 80(3), 255-265.
Mungube, E. O., Tenhagen, B. A., Kassa, T., Regassa, F., Kyule, M. N., Greiner, M., & Baumann, M. P. O. (2004). Risk factors for dairy cow mastitis in the central highlands of Ethiopia. Tropical animal health and production, 36(5), 463-472.
Petrovski, K. R., Trajcev, M., & Buneski, G. (2006). A review of the factors affecting the costs of bovine mastitis. Journal of the South African Veterinary Association, 77(2), 52-60.
Quinn, P., Markey, B., Leonard, F., FitzPatrick, E., Fanning, S., Hartigan, P., 2011. Streptococci. Veterinary Microbiology and Microbial Disease. Wiley-Blackwell, West Sussex, pp. 188–195 pp.
Raabe, V. N., and Shane, A. L. (2019). Group B streptococcus (Streptococcus agalactiae). Microbiology spectrum, 7(2), 7-2.
Rosini, R., and Margarit, I. (2015). Biofilm formation by Streptococcus agalactiae: influence of environmental conditions and implicated virulence factors. Frontiers in cellular and infection microbiology, 5, 6.
Ruegg, P. L. (2017). A 100-Year Review: Mastitis detection, management, and prevention. Journal of dairy science, 100(12), 10381-10397.
Sharma, N., Singh, N. K., and Bhadwal, M. S. (2011). Relationship of somatic cell count and mastitis: An overview. Asian-Australasian Journal of Animal Sciences, 24(3), 429-438.
Slotved, H. C., Kong, F., Lambertsen, L., Sauer, S., and Gilbert, G. L. (2007). Serotype IX, a proposed new Streptococcus agalactiae serotype. Journal of clinical microbiology, 45(9), 2929-2936.
Sumathi, B. R., Veeregowda, B. M., and Amitha, R. G. (2008). Prevalence and antibiogram profile of bacterial isolates from clinical bovine mastitis. Veterinary World, 1(8), 237-238.
Toniolo, C., Balducci, E., Romano, M. R., Proietti, D., Ferlenghi, I., Grandi, G., ... and Janulczyk, R. (2015). Streptococcus agalactiae capsule polymer length and attachment is determined by the proteins CpsABCD. Journal of Biological Chemistry, 290(15), 9521-9532.
Villanueva, M. R., Tyler, J. W., and Thurmond, M. C. (1991). Recovery of Streptococcus agalactiae and Staphylococcus aureus from fresh and frozen bovine milk. Journal of the American Veterinary Medical Association, 198(8), 1398-1400.
Whiley, R. A., and Hardie, J. M. (2009). Genus I. Streptococcus Rosenbach 1884, 22AL. Bergey’s Manual of Systematic Bacteriology, 3, 655-711.
Gomes F., Henriques M. Control of Bovine Mastitis: Old and Recent Therapeutic Approaches. Curr. Microbiol. 2016;72:377–382. doi: 10.1007/s00284-015-0958-8.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Wesenu Berhanu
This work is licensed under a Creative Commons Attribution 4.0 International License.