Climate Resilient Animal Husbandry – A Review
DOI:
https://doi.org/10.5455/ijlr.20210826050420Keywords:
Adaptation, Climate Change, Impact, Livestock production, MitigationAbstract
Livestock is vulnerable to different climatic stressors such as high air temperature, relative humidity, solar radiation, high wind speed, flood, drought, desert, heatwave, feed, fodder, and water scarcity, etc. which now seems to be very common in the tropical and subtropical climatic conditions of India. Due to the rapid growth of the human population, demand for milk and meat is increasing day by day. The climate change scenario is assumed to be a major threat to animal production systems under a tropical climate. So, climate-resilient animal husbandry has become the need of the hour for sustainable livestock production which would be one of the remedies for fulfilling the demand of the fast-growing population of India. The objective of this review is to focus on the impact of climate change on livestock production, poultry production, feed and fodder availability, reproduction, disease of livestock, different adaptive and mitigation measures to overcome the adverse impact of climate change on livestock and its production.
References
Aarif O. and Aggarwal A. (2015). Evaporative cooling in lategestation Murrah buffaloes potentiates immunity around transition period and overcomes reproductive disorders. Theriogenology, 84 (7): 1197– 1205.
Aarif O. and Aggarwal A. (2016). Dry period cooling ameliorates physiological variables and blood acid base balance, improving milk production in Murrah buffaloes. Int. J. Biometeorology, 60 (3): 465 – 73.
Al-Haidary A., Spiers D. E., Rottinghaus G. E., Garner G. B. and Ellersieck M. R.(2001). Thermoregulatory ability of beef heifers following intake of endophyte-infected tallfescue uring controlled heat challenge. J. Anim. Sci., 79: 1780 – 88.
Banerjee D., Upadhyay R. C., Chaudhary U. B., Kumar R., Singh S. V., Ashutosh, Mohanarao G. J., Polley S., Mukherjee A., Das T. K. and De S.(2013). Seasonal variation in expression pattern of genes under HSP70 family in heat and cold-adapted goats (Capra hircus). Cell Stress and Chaperones, 19 (3): 401 – 08.
Baruselli P. S.., Ferreira R. M., Sales J. N. S., Gimenes L. U., Sa Filho M. F., Martins C. M., Rodrigues C.A. and Bo G. A. (2011). Timed embryo transfer programs for management of donor and recipient cattle. J. Theriogenology. 76 (9): 1583 – 1593.
Bhakat M., Mohanty T. K., Gupta A. K. and Abdullah M. (2014). Effect of season on semen qualityof crossbred (Karan Fries) bulls. Advances in Animal and Veterinary Sciences, 2 (11): 632–37.
Blackshaw J. K. and Blackshaw A. W. (1994). Heat stress in cattle and the effect of shadeon production and behaviour. Australian J. Experimental Agriculture, 34 (2):285 – 95.
Berman A. (2005). Estimates of heat stress relief needs for Holstein dairy cows. J. Anim. Sci., 83:1377 – 1384.
Bhan C., Singh S. V., Hooda O. K., Upadhyay R. C. and Beenam. (2013). Influence of temperature variability on physiological, hematological and biochemical profiles of growing and adult Karan Fries cattle. Ind. J. Anim. Sci., 83 (10): 1090 – 96.
Bucklin R. A., Turner L. W., Beede D. K., Bray D. R., Hemken R. W. (1991). Methods to relieve heat stress for dairy cows in hot, humid climates. Applied Engineering in Agriculture, 7 (2): 241 - 247.
Chandra G., Aggarwal A., Kumar M., Singh A. K., Sharma V. K. and Upadhyay R. C. (2014). Effect of additional vitamin E and zinc supplementation on immunological changes in peripartum Sahiwal cows. J. Anim.Phy. Anim. Nut.,98 (6): 1166– 1175.
Chaudhary Sandhya S., Singh Rana Ranjeet, Singh V. K., Manat T. D. , Khardi V. B. and Sorathiya L. M.(2019). Effect of heat ameliorative measures on microclimate, physiological, blood biochemical parameters and milk production in lactating Surti buffaloes. Ind. J. Anim. Sci., 89 (1): 97 – 104.
Chebel R. C., Santos J. E., Reynolds J. P., Cerri R. L., Juchem S. O. and Overton M.(2004). Factors affecting conception rate after artificial insemination and pregnancyloss in lactating dairy cows. Anim. Reproduction Sci., 84 (3–4): 239 – 55.
Collier R. J., Dahl G. E. and Van Baale M. J. (2006). Major advances associated with environmental effects on dairy cattle. J. Dairy Sci., 89 (4): 1244 – 1253.
Collier R. J., Collier J. L., Rhoads R. P. and Baumgard L. H. (2008). Genes involved in the bovine heat stress response. J. Dairy Sci., 91 (2): 445 - 454.
Collier R. J. and Collier J. L.(2012). Environmental Physiology of Livestock, 1st edition. (Eds) Collier R J and Collier J L. John Wiley & Sons, Inc., New York.
Crutzen P. J., Aselmann I. and Seiler W.(1986). Methane production by domestic animals, wild ruminants, other herbivorous fauna and humans. Tell us, 38B: 271 – 284.
Dandage S. D., Singh S. V., Upadhyay R. C., Hooda O. K. and Vaidya M. M. (2010). Hair density and their relationship with surface area, heat storage and adaptability indifferent age groups of cattle and buffaloes. Ind. J. Dairy Sci.,63 (3): 238 – 42.
Das S. K.(2012). Effect of THI on milk production and physiological responses ofcrossbred cows during different months under the agro climatic condition of Bihar. Ind. J. Dairy Sci.,65 (3): 246 – 248.
Das S. K., Karunakaran M., Barbuddhe S. B. and Singh N. P. (2015). Effect of Orientation, Ventilation, Floor Space Allowance and Cooling Arrangement on Milk Yield and Microclimate of Dairy Shed in Goa. J. Anim. Res., 5 (2): 231- 235.
Das K. S., Singh J. K., Singh G., Upadhyay R. C., Malik R. and Oberoi P. S.(2014). Heat stress alleviation in lactating buffaloes: Effect on physiological response, metabolichormone, milk production and composition. Ind. J. Anim. Sci., 84(3): 275 – 80.
Das R., Sailo L., Verma N., Bharti P., Saikia J., Imtiwati and Kumar R. (2016). Impact of heat stress on health and performance of dairy animals: A review. Veterinary World, 9 (3): 260-268.
De D. and Singh G. P.(2001). Monensin enriches UMMP supplementation on in vitro methane production in crossbred calves. In: Proceedings of the X Animal Nutritional Conference), Karnal.
24. Eigenberg R. A., Brown‐Brandl T. M. and Nienaber J. A. (2007). Development of alivestock weather safety monitor for feedlot cattle. Applied Engineering in Agriculture, 23 (5): 657 - 660.
FAO. (2014). Food and Agriculture Organization of the United Nations, Rome, Italy.
Friedman E., Voet H., Reznikov D., Dagoni I. and Roth Z. (2011). Induction of successive follicular waves by gonadotropin- releasing hormone and prostaglandin F2α toimprovefertility of high producing cows during the summer and autumn. J. Dairy Sci., 94: 2393 – 2404.
Fujita J.(1999). Cold shock response in mammalian cells. J. Molecular Microbiology and Biotechnology, 1: 243 – 55.
Ganaie A. H., Hooda O. K., Singh S. V., Ashutosh and Upadhyay R. C. (2013). Effect of vitamin C supplementation on immune status and oxidative stress in pregnant Murrah buffaloes during thermal stress. Ind. J. Animal Sciences, 83(6): 649 – 55.
Garnett T. (2007). Meat and Dairy production and consumption: Exploring the livestock Sector’scontribution to the UK's greenhouse gas emissions and assessing what lessgreen house gas intensive systems of production and consumption might look likefood. Climate research Network.
GodaraAsu Singh, BhatShowkat A., Yogi Ravindra Kumar, Devi Sunitibala L. and Sahoo SaradaPrasanna. (2016). Feeding Strategies to ameliorating the impact ofheat stress in bovine. Int. J. Sci. and Nature, 7 (1): 25 - 29.
Hahn G. L.(1999). Dynamic responses of cattle to thermal heat loads. J. Anim. Sci., 77 (suppl 2): 10–20.
Hai L., Rong D. and Zhang Z. Y.(2000). The effect of thermal environment on the digestion of broilers. J. Anim. Phys. and Anim. Nut., 83: 57 – 64.
Indira D. and Srividya G.(2012). Reducing the Livestock related greenhouse gasesemission. Vet. World, 5 (4): 244 – 247.
34. IPCC. (2001). Technical summary: contribution of Working Group I to the Third Assessment Report. Intergovernmental Panel on Climate Change, January 2001.
Kamal R., Dutt T., Patel M., Dey A., Chandran P. C., Bharti P. K. and Barari S. K.(2016). Behavioural, biochemical and hormonal responses of heat-stressed crossbred calvestodifferent shade materials. J. Applied Anim. Res., 44 (1): 347 – 54.
Kumar S., Prasad K. D., Deb A. R. (2004). Seasonal prevalence of different ectoparasites infecting cattle and buffaloes. BAU J. Res.16 (1):159 – 163.
Kumar A., Ashraf S., Goud T. S., Grewal A., Singh S. V., Yadav B. R. and Upadhyay R.C.(2015). Expression profiling of major heat shock protein genes during different seasons in cattle (Bosindicus) and buffalo (Bubalusbubalis) under tropical climatic condition. J. Thermal Biology, 51: 55 – 64.
Kumar M., Kaur H., Deka R.S., Mani V., Tyagi A.K. and Chandra G. (2015). Dietaryinorganic chromium in summer-exposed buffalo calves (Bubalusbubalis): effects on biomarkers of heat stress, immune status, and endocrine variables. Biological Trace Element Res., 167: 18 - 27.
Kundu S. S., Mani V. and Sontake U. (2013). Feeding strategies for cattle and buffalounder climate change scenario for sustaining productivity. Climate Resilient Livestock and Production System. (Eds) Singh S V, Upadhyay R C, Sirohi S and Singh A K. National Dairy Research Insitute, Karnal, Haryana, India, P. 116 – 130.
Lallawmkimi M. C., Singh S. V., Upadhyay R. C. and De S.(2013). Impact of vitamin E supplementation on heat shock protein 72 and antioxidant enzymes in different stages of Murrah buffaloes during seasonal stress. Ind. J. Anim. Sci., 83 (9): 909 – 915.
Lal S. N., Verma D. N., Husain K. Q.(1987). Effect of air temperature and humidity on the feed consumption, cardio respiratory response and milk production in Haryana cows. Ind. Vet. J., 64 (2): 115 – 121.
Mahajan Sumit, PapangJanailin S., Singh Shivraj and Datta K. K. (2015). Adaptation and mitigation strategies for dairy cattle: Myths and realities in Indian condition - A Review. Agri. Review, 36 (4):287-295.
Maibam U., Singh S. V., Upadhyay R. C., Baliyan B., Kapoor S. and Singh A. K. (2014). Expression of genes related to skin colour and their relationship with thyroidal hormones and tyrosinase enzyme during summer and winter season in Tharparkar cattle. J. Environment Res. and Development, 9 (1): 113 – 119.
Mandal D. K., Rao A.V.M.S., Singh K., Singh S. P. (2002a). Effects of microclimatic factors on milk production in a Frieswal herd. Ind. J. Dairy Sci.55 (3): 166 – 170.
Mandal D. K., Rao A.V.M.S., Singh K. and Singh S. P.(2002b). Comfortable macroclimatic conditions for optimum milk production in Sahiwal cows. J. Appl. Zool. Res., 13 (2/3): 228 –230.
Mehla K., Magotra A., Choudhary J., Singh A. K., Mohanty A. K., Upadhyay R. C., Srinivasan S., Gupta P., Choudhary N., Antony B. and Khan F. (2014). Genome-wide analysis of the heat stress response in Zebu (Sahiwal) cattle. Gene, 533(2): 500 – 507.
Melo R.P., Castro L.P., Cardoso F.F., Barbosa E.F., Melo L.Q., Silva R.B., PereiraR.A.N. and Pereira M.N. (2016). Supplementation of palm oil to lactating dairy cows fed a high fat diet during summer. J. Anim. Sci., 94(suppl. 5): 640.
Nienaber J. A. and Hahn G. L.(1991). Associations among body temperature, eating and heat production in swine and cattle. In: Energy Metabolism of Farm Animals, EAAPPubl. No. 58, Zurich, Switzerland. pp 458 – 461.
NRC. (1996). Nutrient requirement of beef cattle. National Research Council, National Academy Press, Washington, DC.
Patel B., Kumar N., Jain V., Ajithakumar H. M., Kumar S., Raheja N., Lathwal S. S., Datt C.andSingh S. V. (2017). Zinc supplementation improves reproductive performance of Karan-Fries cattle. Ind. J. Anim. Reproduction, 38(1): 20–22.
Pawar M. M., Srivastava A. K., Chauhan H. D. and Damor S. V.(2018). Nutritional Strategies to Alleviate Heat Stress in Dairy Animals – A Review. Int. J. Livestock Res., 8 (1):8 - 18.
Reyes A. L., Álvarez-Valenzuela F. D., Correa-Calderón A., Algándar-Sandoval A., Rodríguez- González E., Pérez- Velázquez R. and Fadel J. G. (2010). Comparison of three cooling management systems to reduce heat stress in lactating Holstein cowsduring hot and dry ambient conditions. Livestock Sci., 132 (1): 48–52.
Sadek R. R., Nigm A., Sherien A., Yassien A., Ibrahim M. A. M. and El-Wardani M. A. (2015). Future climate change and its influence on milk production of Holstein cattle maintained in the the nile delta of Egypt. Egyptian J. Anim. Prod., 52 (3): 179–184.
Samal L.(2013). Heat Stress in Dairy Cows - Reproductive Problems and control measures. Int. J. Livestock Res., 3 (3), 14 - 23.
Sejian V., Lal R, Lakritz J. and Ezeji T.(2011). Measurement and prediction of enteric methane emission”. Int. J. Biometeorology, 55 (1): 1 - 16.
Sejian V., Singh A.K., Sahoo A., Naqvi S.M.K. (2014). Effect of mineral mixture and antioxidant supplementation on growth, reproductive performance and adaptive capability of Malpura ewes subjected to heat stress. J. Anim. Phy. Anim. Nut.98: 72 – 83.
Silanikove N. and Koluman N.(2014). Impact of climate change on the dairy industry in temperate zones: Predications on the overall negative impact and on the positive role of dairy goats in adaptation to earth warming. Small Ruminant Research, 123: 27–34.
Singh K. and Bhattacharyya N. K. (1985). Resting heat production in Bosindicusand their F1 crosses with exotic breeds at a thermoneutral environment. British J. Nutrition, 53: 301 –305.
Singh K. B., Nauriyal D. C., Oberoi M. S. and Baxi K. K. (1996). Studies on occurrence of clinical mastitis in relation to climatic factors. Ind. J. Dairy Sci., 49 (8): 534–536.
Singh V. P., Singh W. and Singh N. P.(2012). Comparative physiological responses and heat tolerance of lactating Murrah buffaloes under different season. Cherion, 32: 129– 131.
Singh A. K., Upadhyay R. C., Malakar D., Kumar S. and Singh S. V.(2014). Effect of thermal stress on HSP70 expression in dermal fibroblast of zebu (Tharparkar) and crossbred (Karan-Fries) cattle. J. Thermal Biology, 43: 46 – 53.
Singh NarendraPratap, Bharti P K, Baranwal Amit, Kumar Vinod and Pandey Abhinaw (2018). Ameliorative measures to counteract heat stress in dairy animals of hot sub- humid eco-region. Int. J. Livestock Res., 8 (3): 296 - 309.
Singh SohanVir, Soren Simson, Shashank C. G., Kumar Sunil, Lakhani Preeti, Grewal Sonikaand Kumar Pramod.(2018). Global warming: Impact, adaptation and amelioration strategies for bovine under tropical climatic conditions. Ind. J. of Anim. Sci., 88 (1): 5 – 20.
Singhal K. K. and Mohini M.(2002). Uncertainty reduction in methane and nitrous oxide gases emission from livestock in India. Project report of Dairy Cattle NutritionDivision, National Dairy Research Institute, Karnal, India, p 62.
Sirohi S. and Michaelowa A. (2007). Sufferer and cause: Indian livestock and climate change. Climatic Change, 85 (3 - 4): 285–298.
Soren S., Singh S. V. and Kumar A. (2016). Influence of season on semen quality in Karan Fries (Tharparkar × Holstein Friesian) bulls. J. Anim. Res., 6 (2): 121 – 125.
Seerapu S. R., Kancharana A. R., Chappidi V. S. and Bandi E. R. (2015). Effect of microclimate alteration on milk production and composition in Murrah buffaloes. Veterinary World, 8 (12): 1444 –1452.
68. Srivastava A. K. and Garg M. R.(2002). Use of sulfur hexafluroide tracer technique for measurement of methane emission from ruminants. Ind. J. Dairy Sci., 55 (1): 36 –39.
Steinfold H., Gerber P., Wassenaar T., Castel V., Rosales M. and De Haan C.(2006). Livestock’s long shadow; environmental issue and options. FAO, Rome, Italy.
Stott G. H.(1981). What is animal stress and how is it measured? J. Anim. Sci.,52 (1):150 - 153.
Suriyasathaporn W., Boonyayatra S., Kreausukon K., Pinyopummintr T., Heuer C. (2006). Modification of Microclimate to Improve Milk Production in Tropical Rainforest of Thailand. Asian - Aust. J. Anim. Sci.,6 (19): 811 – 815.
Taylor L. H., Latham S. M. and Woolhouse M. E.(2001). Risk factors for human disease emergence. Philosophical Transactions of the Royal Society B: Biological, 356 (1411): 983–989.
Terada F.(1996). Milk production in hot and humid environments. In: Proceedings of the 8th AAAP Animal Science Congress, Vol. 1, p. 414 – 421.
Upadhaya R. C., Singh S. V., Kumar A., Gupta S. K and Ashutosh A.(2007). Impact of Climate change on Milk production of Murrah buffaloes. Italian J. Animal Sci., 6 (2s): 1329 –1332.
Upadhyay R. C., Asutosh, Kumar A., Gupta S. K., Singh S. V. and Rani N.(2009). Inventory of methane emission from livestock in India. In the book “Global Climate Change and Indian Agriculture”, edited by Aggarwal P K. ICAR, New Delhi, India. P. 117 – 122.
Valeanu S., Johannisson A., Lundeheim N. and Morrell J. M.(2015). Seasonal variation in sperm quality parameters in Swedish red dairy bulls used for artificial insemination.Livestock Sci.,173: 111 –121.
Verma K. K., Prasad S., Mohanty T. K., Kumaresan A., Layek S. S., Patbandha T. K., DattaT.K. and Chand S. (2016). Effect of short term cooling on core body temperature, plasma cortisol and conception rate in Murrah buffalo heifers during hot-humid season. J. Applied Anim. Res.,44 (1): 281– 286.
Walli S. H., Singh N., Haribhushan B. A. and Mir J. I.(2005). Compatible solute engineering in plants for a biotic stress tolerance - role of glycine betaine. Current Genomics, 14: 157 –165.
Wang C., Liu Q., Yang W., Wu J., Zhang W., Zhang P., Dong K. and Hang Y.(2010). Effects of betaine supplementation on rumen fermentation, lactation performance, feed digestibility and plasma characteristics in dairy cows. J. Agr. Sci., 148: 487 – 195.
West J. W. (2003). Effects of Heat-Stress on Production in Dairy Cattle. J. Dairy Sci., 86: 2131 – 2144.
Wolfenson D., Roth Z. and Meidan R.(2000). Impaired reproduction in heat-stressed cattle:basic and applied aspects. Anim. Rep. Sci., 60 - 61: 535 – 547.
Yadav B., Pandey V., Yadav S., Singh Y., Kumar V. and Sirohi R. (2016). Effect of misting and wallowing cooling systems on milk yield, blood and physiological variables during heat stress in lactating Murrah buffalo. J. Anim. Sci. and Tech., 58: 2.
Zimbelman R. B., Collier R. J. and Bilby T. R. (2013). Effect of utilizing rumen protected niacin on core body temperature as well as milk production and composition in lactating dairy cows during heat stress. Anim. Feed Sci. and Tech., 180 (1 - 4): 26 – 33.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Samir Kumar Das
This work is licensed under a Creative Commons Attribution 4.0 International License.